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NOMENCLATURE

coefficient for eddy viscosity equation

wall damping function

turbulence kinetic energy

turbulence length scale

turbulence length scale

rotation number

Richardson number

extra term in equation(4)

turbulent Reynolds number (kX/_y/v)

turbulent Reynolds number (k2/ve)

zj component of mean velocity

zj component of velocity fluctuation

coordinate direction, 1 - streamwise, 2 - transverse

dissipation rate of kinetic energy

turbulent viscosity

constant in model equation (3)

constant in model equation (4)

local mean vorticity

angular velocity



ABSTRACT

The two-layer near wall approach in combination with the k - e model was applied

to rotating flows. Validation studies show that the conventional length scales have to

be modified to account for rotating effects. Guided by the Lain and Bremhorst's low

Reynolds number model with the rotation-corrected k - e model, a new set of length

scales formulation is proposed. The developments and validations of the current model

are reported. A fully elliptic numerical method developed to solve the two-dimensional

Reynolds-averaged Navier-Stokes equations is employed for the computational study.
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INTRODUCTION

The flow fields in typical liquid rocket enginessuchas the SpaceShuttle Main Engine

(SSME) have the common feature that the flow is highly turbulent and the flow paths

involve bends through large anglesat a small radius of curvature. The flow is normally

used to drive turbines during its transit through the system. This implies flows with

significant rotation. Experiments concerning the streamwisecurvature effects, as well as

system rotation effects on turbulence structure have been carried out extensively for the

last decade[I,2,3,4]. Theseeffects on shear layers are of considerableinterests, both as a

basic fluid mechanicsproblem aswell as a designproblem for fluid machineries.

For theseflow problems involving solid boundaries, the turbulence in the low-Reynolds

number near-wall region hasbeenshownto havedominant effectson the overall flow struc-

tures. As for the effectsof the rotation on the near-wall turbulent structure, Bradshaw[5]

in 1969has pointed out the similarities among rotation, streamline curvature, and ther-

mal stratification on turbulent flows. In all three cases,the extra body force has either a

stabilizing or destabilizing effect on the flow depending on its interaction with the driving

mechanism. Near the wall regions, theseeffectsare evenmore profound. Near the concave

wall of a curved wall-bounded flow as well as the pressureside wall of a rotating flow,

turbulence is significantly enhancedwith an increase in the production rate of turbulent

kinetic energy. On the other hand, the turbulence is suppressednear the convex wall and

even laminarized on the suction side of a rotating flow at high rotational speeds.

There have been a number of computational studies of predicting the rotation as

well as streamwise curvature effects on turbulence by using turbulence closure models.

While some higher-order models including Reynolds Stress models and Algebraic Stress

Models have been used, majority of the models used are eddy viscosity models based on

calculations of a characteristic velocity scale and a turbulence characteristics length scale.



For rotating flows and curved flows, the most common form used is the Monin-Obukhov

similarity formula (see[ 5] ):

I 1
- _- 1 - 3Ri

lo 1 + 3 Ri

where j3 is a constant, which can be determined from experiments, 10 is the mixing length

at zero rotation and in flow with no curvature, and Ri is a Richardson number, defined as

Ri = -2Ro(dU/dy - 2Ro)
(dU/dy) 2

In which Ro = _D/U, _ is the angular velocity.The Richardson number is a local stabihty

parameter and a negative value of Ri denotes an unstable effect while a positive value

denotes a stable effect. For wall-bounded flows, these turbulence models have to be used

in conjunction with models dealing with the near-wall low-Reynolds number region.

Several procedures have been developed to provide the near wall treatments which

include using wall functions, coupling to some empirical models, and adding low Reynolds

correction terms to integrate to the wail. In previous calculations of wall-bounded rotating

turbulent flows, wall function approaches [6,7] are most frequently used to model the near-

wall region flow structures. These methods are derived from the logarithmic velocity

profile based on experimental observations that turbulence at the near-wall region can be

described in terms of the wall parameters such as wall shearing stress, normal distances, etc.

Therefore, these methods are not valid if the logarithmic velocity profile no longer prevails

in the near-wall region. Due to this limited applicability of the wall function methods,

low Reynolds number models (see, for example [8]) have been developed to overcome

the shortcomings of the wall functions methods. In Ref.[9], we have extended Chien's

[10] low Reynolds model for near-wall turbulence structure calculations, to account for

rotation/curvature effect. This approach has been shown to be effective in combination

with added rotation corrections to the k - e model. However, a larger number of grid

points have to be placed at the near-wall region, and numerical instabilities are frequently



encountered. Another alternative is the two-layer model as described in [11,12]. In this

model, the computational domain is divided into two layers near the wall: the outer layer,

where tile flow is fully turbulent, and the inner layer, where the flow is dominated by

viscosity and wall damping effects. The turbulent kinetic energy equations are extended

to include the inner layer, whereas the dissipation rate equations are solved only in the

outer region. In comparison with the low Reynolds number model, the two-layer model

usually requires less grid points in the very near-wall region, and generally is more stable.

Tile purpose of this study is motivated by the success of the two- layer near wall

model for separated flows at low speeds [12], and, for high- speed shock/boundary layer

interactions as reported by Horstman [13]. The approach used here is to apply the two-

layer near wall treatment to the previously tested rotation-corrected k - e model of [9]. It

was found that the original length scales formulas used in [11,12] based on non-rotating

flat plate flow dynamics cannot account for the additional rotation effects in the length

scale profiles very close to the wall. New formulations are proposed and tested in this

study. The developments and validations are described in the following sections.

9



GOVERNING EQUATIONS

The Reynolds-averaged momentum equation for incompressible flows on a rotating

frame can be written as

OU_ 0
+ =-(u,v_)= --_

0--7-

OUi
-0

Ozi

10P 1 0 •OUi 0

po_, + Re o_ (_ ) - _"_'_-

2eijkf_jUk -- (f_jxjf_i -- _j;cif]j)

(1)

(2)

The last two terms in equation (2) are the Coriolis and centrifugal forces, respectively,

and fti is the angular velocity of the rotating frame. For non-rotating eases, f_i = 0.
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TURBULENCE MODELING

For turbulent flows the Reynolds equations are closed using an eddy viscosity derived

from the k - e model. The specific turbulence model used here is the one used in our

previous study involving a correction term to the e - equation. This two equation model

is expressed as:

and

Ok _ 0 vt ) Ok . OUi

O, 0 0 _,,)&] __--:rT_,OU_
o_ + G-j_(Uj*)= o,j f(_+- -c',- ---- -- o'_ Oxj k uiuj Oxj

F.2

-C2(1 -4- Ri*)-_
(4)

C1 = 1.44

C2 = 1.92

The extra term Ri* that appears in equation (4) is a general Coriolis force modification

term which has the form

k 2

(C._ - C_flk)ak-_

in which oak = _ijk(OUi/Oxj) is the local mean vorticity. The model constants C, and

C_ were fixed to be 0.406 and 8.802, which gave most satisfactory results for all rotation

numbers tested.

The two-layer model concept based on Chen and Patel [9] is used here. The computa-

tional domain is divided into two layers near the wall: the outer layer and the inner layer.

The turbulent kinetic energy equations are extended to include the inner layer, whereas
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the dissipation rate equation is solved only in the outer region. Within the inner layer,

is specified as

k3/2

-- (5)

The eddy-viscosity within this layer is determined as,

k 2

vt = C_.kl/2l, - f_C,.,-- (6)

where fu = lu/l, , the length scale Iu and I_ change exponentially with the turbulence

Reynolds number, Rk:

Rk

l, = Cm[1.0 - ezp(- _--_-)] (7)

t_ = c,_[i.o- exp(-_ (8)

kl/2n
Re - (9)

/J

where n is the normal distance from the solid wall. To model the effects of wall junctures

on the length scale, we follow the procedure commonly used. The resultant length scale

l_yf is expressed as

1 "_ 1
(10)

where rn is the number of walls and lj is the length scale contributed by the jth wall and

determined by equation (7) and (8). In the present calculations, the values of constants

t¢

Cl -- -- 2.54 (11)
C_S/4

are determined as follows:

2/_

A, - -5.08 (12)
C_,314

Assigning the value of f,, being 0.95 at the interface of the inner and outer layer, leads

to

12



A_ -- 70 (13)

Tile interface of tile inner and outer layer is located along a constant grid line where Rk

is greater than 200.

Although the two-layer approach has been shown to be effective for representing pres-

sure gradient effects and provides a more accurate and general description of near-wall

flow features than computations using wall functions(see[12]), it has not been applied to

a flow where relaminarization occurs near the wall such as the case for suction side of the

rotating duct. We first applied the same two-layer model as used for the fully developed

channel flow to the rotating duct flow and found that it failed to capture the behavior

of outer regions of the inertia sublayer structure due to the rotation effect. The cause is

traced back to the formulation of two length scales: i.e. l_, (which is to be incorporated

into v,) and l, (which is to be incorporated into the sink term of the near-wall k-equation).

The original formulations of l, and l, were based on flat plate boundary layer formulations

without rotation effects. To be consistent with the behavior of Coriolis-modified e-equation

near the wall, we have developed an expression to prescribe l_ and l, beneath the matched

region of the two-layer model. The forms of the l, and l_, are given as

OU k o.s= 1.0x [1.0+ v(c.-b--dy- (14)

OU k 1.sc a)a( )'] (15)

where 3' = 1.30, These two length scales are then used with Equation (5) and (6) to

compute the eddy viscosity within the viscosity-effected region near the wall.

Due to the lack of information about length scales near the rotating surfaces, the

guidance of developing the above formulation has been obtained by the asymptotic match-

ing analyses as well as the calculated length scale profiles using the low-Reynolds number

13



modeling approach. In the study, the rotation-corrected k - e model (eq.(3) and (4))

are integrated to the walt with the aid of damping functions of Lam and Brernhorst(14!.

the advantage of using i14! is that the same model coefficients Ci and C2 are used for the

two-layer approach. Since the stabilized and destabilized effects are taken care of by the e

equations, original functions used by [14] are used here.

14



RESULTS AND DISCUSSION

The governing differential equations were discretized using finite difference method

based oll tile control-volume formulation on a non-staggered grid arrangement for all de-

pendent variables. The velocity-pressure coupfing was resolved by the Operator Sprit-

ring method (PISO) in time-marching fashion. The detailed methodology and solution

procedure are described in [15]. In principle, this method is capable of computing two-

dimensional internal and external flows that are laminar or turbulent, separate or attached,

incompressible and compressible, steady or unsteady. The method is stable and requires

no smoothing or explicit under-relaxation other than implied by variations in the time

step.

The present model was applied to the fully developing channel flow with and without

rotations. The computed results will be discussed below.

Fully Developed Channel Flow

The calculations imposed a uniform flow profile at the inlet. Turbulent kinetic energy

was set to 0.003 U/2,_ and the energy dissipation rate was fixed based on 0.5 channel height

or step height. A 86 x 61 nonuniform grid was used in calculation domain and about 12

grid points were allocated inside the near wall layer. The Reynolds number was 33000

used for the fully developed channel and rotating flows.

The computational results using the standard k - e model with the two-layer near

wall model for the velocity, the turbulent kinetic energy, the dissipation rate, the ratio of

production rate and dissipation rate, the ratio of turbulence viscosity and fluid viscosity,

the turbulence length scale l_, and l,, and the wall damping function f_, are shown in

Figure 1 to Figure 7, respectively. All the profiles plotted in these figures were calculated

using three different grids which are 86 x 47, 86 x 61 and 86 x 81. Among these three grid

systems, near-wall layer grid points below 9 + = 100 is 8, 10 and 12, respectively. It can

be found that an 86 × 61 grid is sufficient to obtain grid independent solutions.
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It is noted that the dissipation rate doesnot vanish in the region very closeto the wall.

The experimentally observeddissipation rate approachesa constant value in this region.

For y+ _ 0, the dissipation rate takes the limit value 2uk/y 2, which is the analytical

solution of the turbulent kinetic energy equation for a limiting case as y approaches zero.

In Figure 4, it is seen that the production rate vanishes at the wall and increase to

the peak value at y+ _ 15. Hence the assumption of equilibrium turbulent flow may not

be a good approximation for the region of y+ = 0 --_ 30. Using the vanishing boundary

condition for the kinetic energy at the wall yields a growth rate of the turbulent kinetic

energy and a production rate that are in good agreement with experimental data as well

as theoretical analysis. For the region of y+ = 30 --_ 100, the equilibrium turbulent flow

exists since the production rate is approximately equal to the dissipation rate.

From Figure 5, it can be seen that the ratio of turbulent viscosity and fluid viscosity

approaches zero at the region y+ _ 10, which means the flow is laminar. For y+ greater

than 20 the value of the ratio is rapidly increased with linear growth rate. The turbulent

viscosity is about 35 times fluid viscosity when y+ reaches 100.

The wall damping function ft, shown in Figure 7 is assume to be 0.95 on the interface

of the inner and outer layer, where Rk is greater than 200. At the wall, the f_, takes the

limit value of At/A t, ,_ 0.073.
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Rotating Channel Flow

For the rotating channel flow, due to different imposed Coriofis accelerations on the

pressure and suction sides of rotating boundary layers, rotation exhibits destabifization or

stabilization characteristics on the near wall turbulence. At high rotation numbers, the

effects on turbulence will lead to eventual laminarization on the suction side and slightly

enhancement of turbulence intensities on pressure side in rotating channel flow.

We first present the results using the Lam and Bremhorst low Reynolds near wall

damping treatments. At solid walls, no slip conditions and k = 0, de/dy = 0 were imposed.

An 81 × 81 grid was found to be sufficient to obtain grid independent solutions. However,

it was noted that sufficient number of grids should be packed within the logarithmic layer

near the wall. 20 grid points were required in our calculations with the first grid points

away from the wall at about y+=2.

Figure 8 shows the variation of predicted wall shear velocity with rotation and com-

parison with the data. The comparison with Johnston's data shows good agreement with

the modifying effect on the pressure side of the passage. On the suction side, rotation

has significant effect on the near wall turbulence depending on the mean flow Reynolds

number.

In Figure 9 and 10, the near wall velocity profiles are plotted in the semi-log form

using the wall parameters. Also on the figures is the logarithmic velocity profile. It is seen

that fully turbulent flow still exists on the pressure side while laminar flow arises on the

suction side due to the stabilizing effect for higher rotation numbers. The drastic effects

of rotation on the near wall turbulence and the law-of- the-wall assumption can be further

seen from the kinetic energy profiles near both the pressure side wall and suction side wall

in Figure 11 and 12. The strong destabilization effects of rotation on the suction side of the

rotating wall cause the reduction of turbulent kinetic energy level. For rotation number

greater than 0.2, the peaks of turbulent kinetic energy obviously reduce and the turbulent
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kinetic energy levelsare significantly damped. On the other hand, the destabilizing effects

of rotation on the pressure side slightly enhance the turbulent kinetic energy level.

To see the rotation effects on the length scale profiles near wails, l, and Iu profiles are

plotted vs. y+ for Ro = 0.0 and 0.2 at both suction side and pressure side in Figure 13 to

16. It can be seen that both length scales are drastically effected by rotations. A sequence

of runs were performed to derive formulations for length scales as a function of rotation

Richardson numbers described in the modeling section. These formulas are then applied

for the two-layer approach.

In the low-layer approach, A 86 × 61 grid was used with 12 grids below the matching

regions. From the wall to the matching region, the two length scale formulations were

applied to specify eddy viscosities (Eq.(14)) and dissipation rate distributions(Eq.(15)).

In Figure 17 and 18 again, the near wall velocity profiles are plotted in the semi-log

form using the wall parameters. Also on the figures is the logarithmic velocity profile. It

can been seen that the comparisons are quite good. The effects of rotation on the near

wall turbulence can again be seen from the kinetic energy profiles near both the pressure

side wall and suction side wall in Figure 19 and 20. In Figure 21 and 22, the turbulence

eddy viscosity is plotted for pressure side and suction side, respectively. It shows that the

effect of rotating on the turbulence eddy viscosity on the pressure side is small, but on

the suction side the effect significantly decreases the value of eddy viscosity. As rotating

number approaches 0.2, the eddy viscosity almost becomes zero, which means that only

molecular viscosity controls the flow field and no turbulent flow exists on the suction side.

The nondimensional kinetic energy dissipation rate profiles are shown in Figure 23 an

24 for pressure side and suction side. As rotating number increases there is no major change

of dissipation rate on the pressure side, but there is a nonmonotonous change existed on

the suction side. It has been shown that the dissipation rates decrease for small rotating

number{< 0.1), and increase for large rotating number. According to our experince of

18



using low-Reynolds number treatment, such increasing seems to be very sharply and reach

the much larger when rotating number greater than 0.1.

The length scale I_ and Iu profiles are plotted in Figure 25 to Figure 28. As rotating

number increases, the length scales do not change much on the pressure side wall. However,

on the suction side, the length scale l_, becomes smaller and l_ does not change too much

as rotation number increases.
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CONCLUDING REMARKS

Validation studies of the rotation-corrected k - e turbulence model in combinations

with a near-wall two-layer model are carried out. A fully developed channel flow was

first calculated to establish the issues of matching points, matching criteria based on local

turbulence Reynolds numbers, eddy viscosity ratios and grid point resolutions beneath

the matching point. Then, the two-layer approach was applied to the rotating channel

flow case. It was found that the original formula for length scales at the matching point

of the outer layer and inner layer cannot be applied to the complex near wall turbulence

structures due to flow system rotation. A new formula for both length scales, guided by the

Lam and Bremhorst damping function model, was proposed and validated in this study.

It is shown that with proper corrections in length scale formulations, good predictions of

near wall turbulence can be obtained. It is recommended that current formula should be

further generalized for highly curved and separated flows.
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